
3D microwave simulation for 
spherical tokamaks 

  Tom Williams       3rd Fusenet PhD Event    24th June 2013 

Acknowledgments: 

Roddy Vann1 , Martin O’Brien2 , Vladimir Shevchenko2 , Simon Freethy2, Alf  Köhn3 

Tom Williams1 trnw500@york.ac.uk 

1York Plasma Institute, Department of  Physics, University of  York, Heslington, York YO10 5DD, UK 

2EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK 

3IGVP, Universität Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany 



Outline 

1.  Why study microwave interactions? 
2.  Underlying plasma physics 
3.  3D full-wave simulations 
4.  Ongoing work 
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3D effects 

•  Spherical tokamak edge plasma contains 3D 
density fluctuations (filaments, blobs etc.) and 
magnetic shear 

•  Interactions with microwaves must be understood 
for EC emission diagnostics, heating and current 
drive (for EBW, the effect on mode conversion) 

•  3D full-wave modelling necessary to explore 
interactions in detail, investigate new physics and aid 
interpretation of  experimental data 

•  Extrapolation beyond current experiments 

MAST plasma showing filaments at edge 
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SAMI diagnostic 
•  York/Culham collaboration                 
(V. Shevchenko et al., 2012,    arXiv:
1210.3278 [physics.plasm-ph]) 

•  Images microwave emission at 10 - 35 
GHz → radial range through edge. High 
time resolution (~10μs) 

•  In process of  using this data to generate 
an edge J-profile – aim to reconstruct 
pedestal during inter-ELM period. Major 
H-mode issue 

•  Observed fluctuations much higher than 
expected! (Dave had a poster…) 
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Cold plasma dispersion 

•  Assume plane waves & rewrite linearised Maxwell’s equations using 
dielectric permittivity tensor . Matrix equation obtained: 

•  Ideal, cold, magnetised plasma with uniform equilibrium B0-field. 
Evaluate dielectric tensor using linearised fluid equation for electrons: 

•  Assume B0 and k are perpendicular (i.e. propagation ┴ background 
magnetic field) – find 2 solutions to matrix equation: 

X-mode O-mode 
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Cold plasma modes 
X-mode O-mode 

V.F. Shevchenko “EBW in fusion 
plasma” lectures, 2009 
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X-O conversion 

•  Mode conversion from X-mode to O-mode (and vice versa) occurs at O-mode 
density cut-off   (ω = ωpe) if  wave is obliquely incident at an optimal angle to B0 

•  At suboptimal angles, wave tunnels through evanescent layer of  finite width 
(dependent on density scale length Ln), reducing conversion efficiency 

•  Using WKB approximation, this efficiency T 
was calculated by Mjølhus : 

E. Mjølhus, J. Plasma Physics 31 (1) 7, 1984 
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B-X-O in a spherical tokamak 
•  Electrostatic electron Bernstein modes (EBWs) are excited near cyclotron 
resonances and couple to X-mode at the upper hybrid resonance 

•  Typically, in STs such as MAST running at high β (higher ne , lower B0), ωpe > 
ωce 

•  Problematic for conventional ECE diagnostics but allows B-X-O conversion to 
produce two cones of  O-mode emission from the edge 

•  Cones emitted in the plane of  B0 and  

•           known from TS diagnostic  

•  Imaging these cones gives pitch of  B0 
→ Bθ → J at edge 
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Previous modelling 

•  Ray/beam tracing applied to beam propagation problems, but fast variations in 
refractive index make it unsuitable for conversion region 

•  2D full-wave modelling of  O-X conversion by A. Köhn, using the code IPF-FDMC 

•  Detailed insight into the mode conversion process 

A. Köhn, 
Ph.D. Thesis, 
2010 
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3D simulations – ADE-FDTD 

•  New code developed in support of  experimental project 

•  3D finite difference time-domain (FDTD) method for solving Maxwell’s equations : 

•  Discretise field components to staggered grid to 
simplify calculation of  numerical curl 

•  Substitute in 2nd order centred difference formulae in 
both space and time 

•  Obtain leapfrog equations for updating E and B-fields 

•  For plasma dielectric response, solve: 
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•  Written in C++. Data-level parallelisation (spatial domain) using MPI 

•  Arbitrary static ne and background B0 profiles specified – incident beam then 
excited using TF/SF source term and simulation run in time domain 

•  Perfectly matched layer (PML) boundary conditions: very thin absorbing regions 

 
 
•  Future development will include hot plasma terms in order to investigate full B-
X-O conversion 

Code details 

O-mode 3D 
Gaussian beam 

propagation 

•  Full 3D grid output at each 
timestep very large; virtual sensors 
reduce output dimensionality / 
sampling frequency. Transmission 
coefficients calculated in post-
analysis  
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Density fluctuation studies 
•  Density fluctuations – beam diverges, reduction of  conversion efficiency 

H.P. Laqua et al, PRL 78 (18), 3467-3470 (1997) 

•  Analytic modelling - pdf  approximating beam 
divergence used to modify Mjølhus formula 

•  Initial 1D and 2D full-wave modelling carried out by Köhn using IPF-FDMC 

• 3D structures (filaments) at tokamak edge. For oblique incidence, problem is 
inherently 3D – 2D modelling is forced to choose single cut through profile 

•  Test validity of  Laqua result across different regimes 
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Code comparison 

O-mode dispersion relation : dashed line – analytical, points : numerical 

•  New 3-D code compared against results from IPF-FDMC. 

•  First stage – dispersion relations 

3D code (Williams) IPF-FDMC (Köhn) 
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Code comparison (2) 

IPF-FDMC (Köhn) 

•  2nd stage – add blob with Gaussian profile, peak density below critical, to 
homogeneous plasma background 

•  Circle at location of  X = 0.6 surface. Codes agree on beam scattering 

3D code (Williams) 

etye 
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Filament scattering 

k 
Incident beam Backplane 
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Analysis 

•  Average electric field on backplane over several cycles 

•  Calculate total E, mean and σ in 2 dimensions – estimate of  ‘degree of  
scattering’ 

 

•  Scan each parameter through experimentally relevant values 
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Parameter 1 : position 

k 
x 
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Position scan results 

  Tom Williams       3rd Fusenet PhD Event    24th June 2013 



Parameter 2 : width 

k 
w
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Parameter 3 : density 
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Parameter 4 : angle 

k 
θ 
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Next steps 

•  Investigate the influence of  presence of  blob near mode conversion 
surface on mode conversion efficiency – compare against Laqua formula 

•  Include more realistic turbulent profiles for ST mode conversion region 
(generated from code e.g. GS2) for highest possible relevance to 
experimental studies. Average results over a set of  perturbed profiles 

•  Include real MAST experimental profiles for comparison 

•  Investigate the effect of  magnetic shear on mode conversion efficiency 

•  Can the effect of  magnetic fluctuations be distinguished from that of  
density fluctuations? 
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Summary 

•  A new 3D FDTD code has been developed to simulate mode conversion in a 
fusion plasma. 

•  This is being used to investigate 3D effects including that of  density fluctuations at 
the turbulent boundary of  a spherical tokamak. 

•  These results are being compared against 2D simulations in a collaboration with 
IGVP Stuttgart. 

•  Results will aid the interpretation of  data from new MAST diagnostic producing 
2D images of  mode conversion windows. 

Thank you for listening. 
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