Microstructural stability of ODS Fe-14Cr(-2W-0.3Ti) steels after simultaneous triple irradiation

M. Šćepanović1, V. de Castro1, T. Leguey1, P. Parente1, M. A. Auger2, S. Lozano-Pérez2, R. Pareja1
1Departamento de Física. Universidad Carlos III de Madrid. 28911-Leganés, Spain
2Department of Materials, University of Oxford, OX1 3PH, Oxford, UK

Abstract
Oxide dispersion strengthened (ODS) 14 wt.% ferritic steels are promising structural materials for future fusion reactors and generation IV fission reactors. The Y-rich nanodispersoid present in these steels leads to higher mechanical resistance and creep strength, and is thought to provide a high concentration of sinks for irradiation-induced defects and transmutation gases, improving radiation resistance significantly as compared to their non-ODS counterparts. In this work, two ODS Fe-14Cr alloys were simultaneously triple-beam irradiated with Fe, He and H ions at 600ºC to simulate the damage produced at DEMO per year. This irradiation was accomplished at the JANNUS-Saclay facility in France. The microstructural stability of these materials has been analyzed by using TEM and PAS techniques.

Materials used
- Fe-14Cr-0.3Y2O3 (14YHT)
- Fe-14Cr-2W-0.3Ti-0.3Y2O3 (14YWTi)

<table>
<thead>
<tr>
<th>Ions</th>
<th>Energy (MeV)</th>
<th>Temp (ºC)</th>
<th>Maximum dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe3+</td>
<td>14 MeV</td>
<td>~300ppm</td>
<td></td>
</tr>
<tr>
<td>He+</td>
<td>1.6 MeV</td>
<td>600</td>
<td>~600ppm</td>
</tr>
<tr>
<td>H+</td>
<td>500 keV</td>
<td></td>
<td>~1500ppm</td>
</tr>
</tbody>
</table>

14YWTi
Transmission Electron Microscopy
- Pre irradiation
 - Bimodal grain distribution containing large recovered grains (up to 15 µm) and small unrecovered submicron grains (<800 nm). Nanoparticles (<40 nm) are Y and Ti-rich and have round morphologies.

- Post irradiation
 - Cross-section of the sample cut by Focused Ion Beam. Analysis done near 2.4 µm, where Bragg peak is located.
 - EDS maps show that there is no change in the composition of nanoparticles.
 - Very small (< 2 nm) irradiation induced bubbles are visible.

14YHT
Transmission Electron Microscopy
- Pre irradiation
 - More uniform grain structure consisting of equiaxed grains with sizes in the range 0.5 – 3 µm. There are different types of secondary phases, with Cr-rich and Y-rich compositions. Nanoparticles (<30 nm) contain Y and are round.

- Post irradiation
 - Cross-section of the sample cut by Focused Ion Beam. Analysis done near 2.4 µm, where Bragg peak is located.
 - Very small (<4 nm) irradiation induced bubbles are visible.
 - EFTEM maps show that there is no change in the composition of nanoparticles.

Results
- General microstructure is stable – it does not change after irradiation.
- No significant irradiation induced changes in the average size, composition and morphology of nanoparticles.

Positron Annihilation Spectroscopy
- PAS is a very effective technique to investigate open-volume defects in metals because they are strong traps for thermal positrons in the crystal lattice. It has been successfully applied to study radiation damage in the bulk of steels used in nuclear technology. Slow PAS allows obtaining the depth distribution of vacancy-type defects up to 1.2 µm from the surface (by varying the positron implantation energy ~ 1 - 30 keV)

Conclusions
For both samples, the nanoparticles have maintained their composition and morphology after triple irradiation, while their sizes appear to increase slightly. Small, irradiation induced, bubbles are visible. Positron Annihilation Spectroscopy results suggest that irradiation induced bubbles remain localized near the Bragg peak.

Future work
- Analysis of samples irradiated with beam degrader
- Analysis of other techniques used – nanoindentation, PALS, Atom Probe
- Irradiations under different conditions in CMAM and JANNUS

Contact
mscepano@ifs.uc3m.es

This research has been supported by Ministerio de Economía y Competitividad of Spain (ENE2012-39877-C06-05), the Comunidad de Madrid through the program TECHNOFUSION/II (S2013/MATE-2745), the European Commission through the European Fusion Development Agreement (EFDA), the Royal Society and the EU FP7 under Grant Agreement 312483 - ESTEMF (Integrated Infrastructure Initiative-4). The JANNUS team is also gratefully acknowledged.